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i. Introduction

Constitutive equations for the stress in viscoelastic fluids have recently
received much attention. However, except for the uncomplicated simple shearing
flows, few motions have been investigated with the proposed stress equations.
One obstacle to the study of more complex motions is the lack of equations of
motion corresponding to the Navier-Stokes equations of the linearly viscous
case. In this paper we derive such equations for the third order approximation
[1] to the constitutive equation of Rivlin and Ericksen [2]. This equation can
also be derived from Noll's more general theory of simple fluids via the
principle of fading memory [3].

To obtain the dynamical equations we require the divergence of the stress
tensor. For non—iinear constitutive relations the divergence of the stress can
be expressed in many forms; however, only a few of these are useful in the
analysis of flows. The particular set of divergence expressions derived below
permit a physical interpretation of each term in the constitutive equation,

and appear to be analytically useful.

2. The Stress Approximations

Under the assumption of slow motion the stress of an incompressible

Rivlin-Ericksen fluid can be successively approximated as follows [1]:

%i = —ip + uoi(l) 1st Order (Newtonian)(2.1)

'?‘ii = 'T‘i + alX(Q) + aQ(fX(l))z 2nd Order, (2.2)

il | i 312(3)+s2(7\(1) CE L E@ 05y, B,I1 ) 3rd order, (2.3)
where the E(N) are the Rivlin-Ericksen tensors defined below, II = K(l):i(l),

and Moo the a's and B's are constants under isothermal conditions.
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(2.1)-(2.3) are used to indicate the order of the approximation. Equations (2.2)
and (2.3) are usually said to describe the second and third order fluids res-
pectively; they may be regarded as exact constitutive equations defining ;hese
classes of fluids or as approximations to more general constitutive relations
valid in the regime of slow flow.

The following recursive formulae for the Rivlin-Ericksen tensors will be

useful in the subsequent sections of the paper [4].

A(N) - (N) (N) z ( ) (N Q) (Q)m ; (2.1)

ij i, 7 3.4 >J
(N)

where the A are the covariant components of the (N-l)th acceleration.

=(1)

Setting N = 1 we immediately recognize A as twice the usual rate of

z(N)

deformation tensor. The A can also be expressed as

DK(N—l)

(V) %_(z(l). F(N-1)  z(N-1) X(l))

(2.5)

Here t denotes time, and D/Dt is the corotational derivative which can be

written as the operator

%t- = v Toea-m (2.6)

where the usual material derivative is denoted by D/Dt and w is the
vorticity vector.

From (2.5) and the Cayley-Hamilton theorem [4] we find the identity

_ - _ - =(1)42 . _
1) 52 3@ ;) | oA 7). 50 %-III i, @mn

Dt

[and]]

=(1)+3 .
where III = (A(l)) . (2.8)

Substituting (2.7) into (2.3) and absorbing the last term into the scalar



.o .. =(1),2
=iii _ gii =(3) D(A ! ! =(1)
T = T + BlA + 82 T + 83 IT A N F2.9)

where B, = B, t+ B

Some of the coefficients of the third order fluid can now be given physical
interpretation from their role in steady simple shearing motions. From (2.1),

(2.2) and (2.9) we have respectively for the material functions of simple

shear
. ‘e cos . '
Tl(K) = Uk =S (k) . rlll(K) = o) + 283K2 shear stress function,
(2.10)
i _ ii _ il _ 2
ol(x) o , o) (x) = o] (k) = (2(1l + a2)K
normal stress
functions, (2.11)
i _ i _ iii _ 2
02(K) =0 , 02(K) = o, (k) = @ K

where «k 1is the rate of strain.

Comparison of (2.10) and (2.11) with data on polymer solutions [7] clearly
shows that the domain of the third order fluid is rather limited. In spite of
this limitation the theory can be used to extrapolate data on the material
functions 1, 0, and o, in the low shear rate regime. The zero-shear vis-

1 2

cosity, Moo has frequently been measured, and in at least one case [6] @y and
e, have been determined from normal stress measurements. The shear function
coefficient B;, while seldom reported, can be readily evaluated from shear
function measurements at sufficiently small values of k.

Liquids whose molecules are small have long been known to obey (2.1) over

the entire range of measurable shear rates. It is reasonable to expect (2.3)

to be valid for very dilute polymer solutions and suspensions. However, at




very low dilutions the non-Newtonian effects tend to dissappear sufficiently
fast to make difficult the experimental verification of this conjecture.

Hence even though the mathematical theory of second and third order fluids can
be regarded as exact constitutive equations, its relation to real materials is
that of an approximate theory at best valid over a limited range of deforma-
tion rates. Although these restrictions appear to be severe, it will be demon-
strated in a future publication [5] that the theory can be successfully used to
interpret data on flows which are more complicated than the simple shearing

motions.

3. The Divergence of the Stress Tensor

Before taking the divergence of (2.2) and (2.9) we record two useful

identities. If bi are the covariant components of any vector field, then

_ -k
bi,j z bj,i + ejik(v xb) . (3.1)

For any symmetric tensor field B the following identity holds for incompres-

sible motion.

DB _ ov-B

Vvt'at

- ¥ x [VxV-B1+V[V-(v:B)] + %(vfx(l):ﬁ rvx BVTE) . (3.2)

This identity is derived in the Appendix where it is given in index notation.
In all formulae derived from (2.4), (2.5) and (2.6) the velocity and vorticity
appearing in them are, because of invariance requirements, to be taken as
relative to the coordinate system to which the various field quantities have
been referred. Hence, in problems such as the flow exterior to a body where
coordinates imbedded in the ﬁoving body are frequently employed, it is neces-
sary to use the velocity relative to the body in the Rivlin-Ericksen tensors,

and formulae derived from them.



To find V-T'% we begin with V-K(2). From (2.4) with (N=2) we have
(2)x _ o2 (2) 7(2) 2 3 .k
Ai,k = Vv vs + (Ve + V ),i - 2(v vj,ik) (3.3)
Expanding the last term and employing (3.1), we finally obtain
L5(2) 0 a(2) VIV = _,- DVV = 3(1) 1
VA = V& *2(at - Vx V2 - S} o+ 20(Ve(VRATTT) - 2 IT) 5 (8.4)
where V{2) is the first acceleration.

= 2 =
To find V-(A(l)) we proceed indirectly by first finding V-DA<1)/Dt,

and then use (2.5) and (3.4) to obtain the desired result by difference.

Putting B = K(l) in (3.2), the last term vanishes leaving us with
=(1) =
DA _ VAR o - ==(1), 1
Ve = S - U x V2 + V(v (V-ATT) - II) (3.5)

Hence from (3.4) and (3.5) it follows that

= 2 = (1) T =(1)
ve B = 0GP - T_DAt )= v27l2) o Mngiv vy BT (3.6)

From (2.3), (3.4) and (3.6) we have for the second order fluid

0 =ii - " - . Y . =(l) _ 11 2%
VeT™ = -VIp - (2040 ) (Ve(V-A77) = 557 + 0 V2V +
VN = o- 25(2) DV2V-
+(2a tay) (S - Vxv20) + (og+a ) (VTS - 2 =) (3.7)

It is worth noting that the restrictions on the velocity vector given above
for equation (3.2) apply here also.
An alternative form of (3.7) can be obtained with the use of Lagrange's

formula for the acceleration

7(2) = +wxV+ —l—v(Vz) | (3.8)



V2(V2) = .2V « V2V + w2 + 1—21- . (3.9)

On substituting (3.8) and (3.9) into (3.7), we find

R zii - _ _ R VAT I 2% avzv kv 2=
veT = -vip (3a,+20,)) (V927 + ) J4p V2V + (20 40,) (S5~ -V x v24)
Hagro I (V2gp + 0 x V) + 5 V@W?) - 2 =) . (3.10)

When (3.10) is put into the equation of motion we can, by recalling the identity
V2V = -V x w, read off the following theorem:
Any isochoric irrotational motion satisfies the dynamical equations of

the second order fluid with Bernoulli's equation given by

1'}- (30, + 2a,) -IEI-+ Q4+ %vz = #(t) (3.11)

where @ 1is the body force potential, and ¢(t) is an arbitrary function of
time, For polymer solutions Sal + 2a2 is positive [7] so that viscoelasticity
tends to reduce the pressure.

In planar flows the Cayley-Hamilton theorem permits (2.2) to be written

in the form

. =(1)
=ii  _ II = =(1) DA
T = -(p - ??-(al+a2))l +uA t o ¢ . (3.12)
Hence for such motions V - %11 becomes
JRii 11. 25 W = o- F.02T
VeT™ = -Vp-(30,420,) 371+ VW +a, (S5 - Vxv2a+ V(V-V2V)) . (3.13)

The curl of (3.13) can easily be shown to reduce to the planar flow vorticity
equation of P. L. and R. K. Bhatnagar [8]. With this equation the Bhatnagars

proved that the velocity field in planar flow is independent of a,s a result



nore directly from {3.12), and is a special case of the results
for planar flows of general Rivlin-Ericksen fluids given by Rivlin and Ericksen
in their original paper [2]. For two-dimensional flow the Bhatnagars extgnded
the above theorem on irrotational motion to the case where the vorticity is a
function of the stream function. However, their pressure equation is not in
agreement with (3.11), and they give no result for the pressure in axisymmetric
flow which was included in their investigation.

Another result which follows directly from (3.13) is Tanner's theorem [9]
on inertialess plane flow of second order fluids. According to this theorem
any two-dimensional solution to the linear Stokes equations satisfies the
inertialess dynamical equation obtained by setting (2.12) equal to zero.

Proceeding to the third order terms in (2.9) we find that the divergence

=(3)

of A cannot be obtained in a form which leads to any new physical inter-

pretation. In perturbation calculations it is most helpful to have the equa-

tions in their simplest form, and with this in mind we have from (2.u4)

7(3) _ g2y(®)

veA + 3 V2 Lo ¢ o7 - w2t

—(3) (2)

+ V(Y- + 39 LWy . | (3.14)

Many equivalent rearrangements of (3.14) are possible. A somewhat different

result can be obtained by using (2.5) and (3.2).
=(1) , (1)

Writing (3.2) with B=%a A gives us
=(1),2
(3.15)

= n
Clearly any terms in the stress equation of the form D(A(l)) /Dt will
give a result similar to (3.15). That is, in steady flow, apart from a pressure

term, the only forces generated are normal to the streamlines. The significance
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with the kinetic energy equation.

Adding the divergence of the third order terms to (3.7), we write

,siii * ) 145 (1) 25(2) , DVAV
v-T = -Vp +V-Lu +BTDA " T+(a 40, ) (V2V"°7 - 2 =)
= — = = 2
18,78 4 Eef(2a 40 )i 4 . G5 (3.16)
1 1 72 2
where the operator E+ is given by
- 37+ — —
Er = S - Ux(vx(v- )] + v[v-(V- )1 (3.17)
and p* = p + (2a.+a,) EI-+ 8 L (3.18)
1l 72" 4y 2 3 ‘
Equating the sum of (3.16) and appropriate body force terms to 07{2), where

p is the fluid density, we obtain the dynamical equation governing the motion

of the incompressible third order fluid.

4, The Equation of Kinetic Energy

In this section we seek further interpretation of the constitutive equation
(2.9) by investigating the equation of kinetic energy. In the absence of body

forces the kinetic energy equation takes the form (Serrin [10] p. 138)

%J;pvzdu - J%.m-;j% : KWy (4.1)

where V 1is an arbitrary material volume enclosed by the surface S. The
constitutive equation enters (4.1) through the terms involving T which we

now evaluate with (2.9).



piil () .

+

The last term sugges

) _y 2
DA . (1) DIIT II<

uo+8311)II + (al+a2)III + Bl( 2 : o 5

D ( I

2
o (@ F * B 3 111) . (4.2)

2

ts that we rewrite (2.9) as

siii =, :
T = T+ T, (4.3)
= = - = 2 -
where TD = -lp + (uo+B;II)§(l) + (al+a2)(§(l)) + 315(3) , (%.4)
_ ola i) + 6, (K1)
and Tp = (4.5)

Writing the kinetic

d 1., . 1
SleGves

We can interpret (4.

a
function” 1 —l-II
b »p

In steady flow this

only a force normal

namic arguments it i

Dt
energy equation (4.1) using (4.2) and (4.3) we have

alII 8, III
p

2 D ’
S v (4.6)

) av = J (T, + T,)-TaA - lJ T i May

6) as indicating the existence of a "rate-of-strain energy

B
+ %- 7?-111 which is associated with the stress field (4.5).

field contributes, apart from an isotropic pressure term,

to the streamlines. Without introducing formal thermody-

s not possible to label the last term in (4.6) the dissipa-

tion. Since thermodynamics is beyond the scope of this paper, we will remain

content with our pur

ely mechanical interpretation of fluid elasticity.
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As an example of the use of some of our previous results, we consider
the flow exterior to a rigid body undergoing steady translation and rotation.
Assuming the condition of adherence we have on the surface of the body So,

and on the exterior surface I

v

]
cl
-+
e
x
1
o}
s}
(7

} (5.1)
V = 0 on I R

where r is the radius vector, and U and Q are respectively the transla-
tional and angular velocities. The surface I can have any shape consistent
with steady motion. If I 1is at a finite distance from So steady motion is
possible only if I and So have a common axis of symmetry. From (4.8), we

have

(F-T+L-0) = HTD i s of (5.2)
' v

where the force F and torque L on So are given by

v

F = J (?DﬁE)oﬁdA (5.3a); T = J ;x(%D+%E)-naA . (5.3b)
S S

(o] (e}

Perturbation analysis of the problem begins with the assumption of a

velocity expansion of the form

T = U 172 72 2(7 7 3
VvV = vo + x(vll+ €2V12) + A (v21+ 52v22+e3v23+ euv214 + €5V25) + 0(r°)

(5.4)

* .
It is not necessary to invoke formal thermodynamics to see that the volume

K(l)

integral of %D : is the global dissipation in this case.




where ) and the ¢ are dimensionless perturbation parameters given by
i D parameters given by
a
N i I ! c
- ~ a ° 2 7 o ta > - ’
Yo 172 8 (o, +a,)?
172
L
By Ba¥s
eq = 2 ’ 55 = ) ’ (5.5)
+
(al a2) (al+a2)

Here M 1is a suitable characteristic speed and a the characteristic length.

The boundary conditions (5.1) are satisfied as follows

MV°=U+?2'x£ on So’ v =0 on I , (5.6a)

V..
1]

on So and on I for all 1i,j . (5.6b)

1"
o

The stress field can also be expanded in a series similar to (5.4)

=31

- - - = 2 - - 3
= Toi-A(Tll+e2Tl2) + A (T2l+e2T22+ o) + 0(2%) . (5.7)

The %ij can be identified by substituting (5.4) into (2.9) and equating

coefficients of A, 162 and so on. Putting (5.7) into (5.3) we write for

the force and torque respectively

F = F ¥ T 2(F T 3
F = Fo + A(Fll+52F12) + A (F21+€2F22+ eee) + 0(X°) (5.8a)

T . T ™ 2¢(7 LT T 3
L = Lo + 1(L11+52L12) + A (L2l+e2L22+ L) + 0(0%) (5.8b)

where ?ij and i&j are the force and torque due to the stress Tij'
Most solutions for the fields Vij which have been published so far have

involved the neglect of inertia in the dynamical equations. In fact, this

assumption is implicit in the choice of perturbation parameters in (5.4) since

none of them contain the fluid density. It is possible to include the effect

of small Reynolds numbers [11,12], but we will neglect inertia completely. It



is shown elsewhere [11] that (2.9), (5.4) and (5.7) lead to the following

governing equations for the Vij and the corresponding pressure fields pij'

= . 7 - 27 . ]
0 = VT Vp, + VAV, , (5.9)
= . = 2y . T ‘
0 = v.T. Vp, F VAV AV s T (5.9b)
0 = V+T,, = -Vp,. +V2V,, +V +71,, o (5.9¢)
ij i ij i

These equations are linear in Vij since the inhomogeneous stress tensors ;ij

are evaluated with the previously determined velocity fields V&-lj s Vi-?j

k]

oo s V;. Clearly, V; is the solution to the corresponding Newtonian problem.
After the %ij have been expressed in terms of the Vij with the help of
(2.9), we substitute (5.7) into (5.2) and, by equating ooefficients of A, A2,

Azei , we obtain

= L=+ .= _ [ s =
F22 U+ L22 Q = 1y A22 : Ao av N (5.10a)
f
= Lw.r .= . [z 2D
F24 U+ L, *0 = Jy Azu : Ao dav (5.10b)
Here the notation i§§) indicates that K(l) is to be evaluated with ng.

Using (5.9a), we can easily find the following identity

i3 L (T - F) . (5.11)
nm (o] nm o]

Employing (5.11) into (5.10) together with the divergence theorem and the

boundary conditions (5.6b), we have

F,_ +U+L.*Q = F. +U4+L. Q = 0 -« (5.12)
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The vorticity equation obtained from (5.9a) is simply

VZGO = 0 . (5.13)

When (5.4) is substituted into the dynamical equations, it follows from (3.7),
(5.13) and the boundary conditions (5.6b) that ViQ will always vanish.

Hence we also have
«U+L,, -2 = 0 . (5.14)

The series (5.8) and (5.9) have been written so that the material constants
appear only in X and the € The vectors ?ij and E&j depend only on U
and @, thus (5.12) and (5.14%) mean that to within terms O(A3) the dissipa-

tion is independent of a. and 82, the material constants which appear in

1
the rate of strain energy (see (4.8)).

The case of a sphere in an unbounded.fluid has been solved by Giesekus [13].
For the special cases of pure translation (9=0) and pure rotation (U=0) his
results are in accord with (5.12) and (5.14). However, for combined rotation
‘and translation (5.12) is not satisfied which indicates an error in this part
of the calculation. The details of these perturbation calculations are extremely
complicated, and errors are difficult to avoid. Hence checks for internal
consistency such as (5.12) can be very helpful.

This investigation was supported by National Aeronautics and Space

Administration grant NsG-705.
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Appendix

To obtain (3.2), we start with

pB,, *X  DpB2X
1k) ik + (vk’mB )y . - vk,mB
Dt Dt im’,k o,k im

Using (3.1) in the middle term of (A.1l) gives us

?
DBik) DBik + &_(A(l)Bm + e wQBm)’k _ Vk’m
Dt Dt 2 V'km i fmk— i o,k Tim
Combining (2.6) and (A.2) we have
k k
L] b
('—p;—vBik) . Dk v G ATy e WM - KoM
Dt 2 km i 2im Tk ,k im
Again using (3.1) on the last term we obtain
k k
b4 b}
(vBik) o D, LW (l)Bm)’k (v
Dt Dt 2 Y'km i im Tk m,i k
Expanding the next to last term gives us
my ° _ .m,k m,_,k m_ .k
(vm,in) = Vi Bk ¥ (v Bmk),i v Bmk,i :
Putting (A.5) into (A.4) and assuming B i

incompressible case

k k
DB ? 3B}
ik _ ik rs % .k m_,k 1.,(1) _mk
Pﬁﬁ?a = v YoV Brks t (v Bk it Q(Amk,iB

(a.1)

(A.2)

(A.3)

(A.4)

(A.5)

is symmetric, we find for the

k
rsg, (1) m’
* 6ki(Arm Bs) )°

(A.6)
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